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ATTENUATION OF FORCED WEAK PLANE PRESSURE WAVES IN A GAS

WITH RADIATIVE HEAT TRANSFER

V. A. Prokoflev

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No, 3, pp. 8-16, 1966

This paper considers the effect of radiative heat transfer on the
propagation of forced plane harmonic pressure waves of small am=~
plitude in an infinite emitting-absorbing inviscid nonconducting gas.
The radiative pressure and radiative energy are neglected, The pur~
pose of this paper is: a) to construct a theory based on the exact di-
rectional distribution of the total (frequency -integrated) specific in-
tensity and to use this theory to calculate the parameters of the wave
motion, b)to compare the exact theory with results obtained on the
basis of the direction~averaged equation of radiative transfer [1] so
as to estimate the errors introduced by various directional approxima~
tions and to demonstrate the importance of the anisotropy of radiation
in radiation gasdynamics.

In the linear theories of Stokes, Rayleigh, Kirchhoff, and Langevin
the problem of wave attenuation is separated into special cases, in
each of which only one single process is considered, This separation is
admissible when to the first approximation the effects of the different
dissipation mechanisms (viscosity, thermal conductivity, radiation,
etc,) are additive. When only one factor is considered the problem
becomes much simpler and the results are more amenable to physical
interpretation, and these results can then be used in the solution of the
complete problem,

§1. The characteristic equation, The one-dimen~
sional plane motion (in the x-direction) of a compres-
sible inviscid fluid with heat transfer by emission and
absorption of radiant energy is described by the sys-
tem of equations of radiation gasdynamics, which con-
sists of the equations of continuity, momentum, ener-
gy, and radiative transfer together with the equation
of state (for a two-parameter gas) and the radiative
equation of state—Kirchhoff's law (if local thermody-
namic equilibrium is assumed),
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Fig. 1. Reduced damping coef-
ficients of nearlyadiabatic pres-
sure waves,

Here p, p, T, u are the pressure, density, tempera-
ture, and velocity of the fluid, x is the coordinate, t
is time, U is the internal energy density, J is the to-
tal specific intensity of radiation, ¢ is the angle be-
tween the ray of radiation and the x axis, H is the ra-
diative flux, « is the mass absorption coefficient, 3
is the integrated emission coefficient, and o' is the
Stefan~Boltzmann constant, All variables in these
equations are considered to be continuous.
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Fig. 2. Damping coefficients per wave-

length a4 (solid lines) and per wave-

length of the adiabatic sound wave «

(dashed lines) for v = 5/3. The value of
Z is shown on each curve,

Consider an infinite homogeneous gas at rest (whose
parameters we shall denote by subscript 0) and let
small plane harmonic perturbations be excited in the
plane x = 0, As a result, all the parameters of the gas
will assume the perturbed valueg

Rz, t) =Ry 1 + R’ (, 1)),
R (z,t) = R (0, 0) exp (az + iot),
H = 2nB,H',

’
u = cgu,

u =0 Hy=0, Jy=B8,, {1.2)

where the primes denote perturbations, Here R de-
notes any of the variablesp, p, T, w, J, B; ¢; is the
adiabatic speed of sound, @ is a complex constant, to
be determined from the solution, and ¢ is the circular
frequency of the forced oscillations. Assuming that all
perturbations and their derivatives are small and sub-
stituting (1.2) into the linearized form of (1.1), one ob-
tains a system of linear homogeneous equations for
the perturbations. The condition for the existence of
nontrivial solutions of this system yields the charac~
teristic equation
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Fig. 3. Damping coefficients o, (solid lines) and a,y (dashed lines)
for different values of the ratio of specific heats (indicated on the
curves) a) Z=6, b) Z =10,
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Here vy is the ratio of specific heats and cy is the spe-
cific heat at constant volume,
The logarithmic function in (1.3) replaces the integral
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where the path of integration in the complex plane is along the straight
line 1 +q, 1 — g. Consequently, we take the branch of the logarithm
with the argument in (0, 7).

The analysis of the effect of radiative transfer on
weak waves is reduced to the determination of g (m or
a) from Eq. (1.3) as a function of the frequency and
the properties of the gas. Both sides of the equation
are even functions of m; the forced oscillations propa-
gate in either direction according to the same rule.
There exist no purely imaginary or real roots of the
characteristic equation except the trivial solution cor-
responding to the gas at rest. Thus the solution rep-
resents damped traveling waves.

All unknown variables can be expressed in terms
of one of them, e,g., the temperature perturbation,
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The physical meaning of v, w, Z, ¢, my, mj was ex-
plained in another paper [1]; the correspondence be-
tween the present notation and that of [1] is

w=gut, Z=25z°, L=201, Zv =252, (1.6)

where the superscript ° denotes the variables of
[1]. The symbols g and g' denote constant coefficients
associated with the directional averaging of the equa-
tion of radiative transfer. The meaning of q is clear

from the identities
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Here a1 is the wave damping coefficient per photon
mean free path Ay; Iy, ! are the optical thicknesses
of an adiabatic sound wave and the pressure wave;
nry and ny are the corresponding optical wave num-
bers,

In the following we determine the damping coeffi-
cients of the pressure waves: 1) ag4, per wavelength
of a sound wave [ = 2re,/o; 2) @, per wavelength of
the pressure wave; 3) agy per unit length; 4) a,, pro-
portional to the ratio of @, to the square of the fre-
quency, which is of some interest in acoustics:

Qgy == 1 a lv Agp = 2ﬂga’lo‘ = 2% I my ly
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The characteristic equation contains the two govern-
ing dimensionless parameters v and Z, or combina-
tions of these. These parameters can be expressed in
terms of the characteristic time for wave oscillations
—the period 4, the characteristic time for absorption
trqg—the time during which the wave travels over a dis-
tance equal to one radiation mean free path, and the
characteristic time for emission tyg—~the time re-
quired for the emission of the variable part of the in-
ternal energy,
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These parameters also admit interpretation in
terms of energy,
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Here E is the thermal energy emitted by unit mass
per unit time, g, is the thermal internal energy of
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the gas, and k. is the radiative conductivity. The num-
ber Z characterizes the ratio of the energy emitted
by unit mass during the time t,, to its thermal inter-
nal energy, ¢y characterizes the ratio of the thermal
internal energy to the energy emitted by unit mass
during one period, and the product Zv characterizes
the ratio of the radiative-conductive heat flux to the
convective heat flux. In all these parameters the speed
of sound ¢; is used as the characteristic speed. It can
be seen that Zv is the reciprocal (to within a constant
multiplier) of the Peclet number based on ky, c;.

The physical interpretation of the results of the
study of Eq. (1.3) can be given within the framework
of the terminology of relaxation acoustics also from
an energetic viewpoint,

§2. Nearly adiabatic waves. It follows from the characteristic equa-
tion that the necessary and sufficient condition for the existence of

nearly adiabatic waves (weakly damped and propagating at almost
the speed of sound) is that the parameter 8 be small, where

3=KZ, K 1(1—-_1_arctgv\,
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K 7K B o £ s . (2.1)

For small 8 and y not too close to 1 we obtain
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The positive function K(v) has a single extremum-—a maximum
(Fig. 1) at the point v = vy, where vy, = 1,514994 (wp, = 0.660068),
K(vp,) = 0.229878., The parameter B satisfies 8 = 0,2299Z, i.e., for
any given frequency it is small if Z is small, which is the case in all

gases and liquids in all states which are not extremely far removed
from the normal state. The inequality B « 1 is satisfied for any given
Z if v is either sufficiently small or sufficiently large, and in these

two cases the inequality 3 <« 1 becomes

1) vL£1, Zv £ 1,
2) v >>1, L1, (2.3)
To a first approximation (2. 2) yields
Ggmag=al=lp a,.=1"1pg,
Y
= T=18 (2.4)
T v

The true damping coefficient reaches a maximum o 4, =
= 0.229878 n.(y —1) Zy™* at v = v, and tends to zero when v is
very large or very small. The coefficient is a monotone function of
v and increases with increasing v from 0 to ¥/,(y — 1) Zy™. The co-
efficient a; ~ 0% only for v = ~0.1, The general behavior of the
curves is the same as in [1], but there is considerable quantitative
difference. All damping coefficients are ~Z and increase with in-
creasing y.
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Fig, 4. Damping coefficient per radiation

mean free path a; for y = 5/3 (solid lines)

and y = 7/5 (dashed lines). The value of Z
is indicated on each curve.

For small v the right sides of (2. 2) take simpler forms,
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The leading terms are in qualitative agreement with the results
of the direction-averaged theory. Quantitative agreement can be ob-
tained by appropriate choice of the averaging coefficients, e.g., 1)
g=1/V3, g=Y, 2 g =g = o0r3) g = 06402, g’ = 0.6146.



The subsequent terms, however, do not agree with the direction-~
averaged theory, To the first approximation a, = a,6~0, @, ~0?,
Qg ~ 0% allcoefficientsare proportionaltoZ, and  tgy ~hr, @5 ~ Ay,
a, ~ A%

For large v Egs. (2.2) yield
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Fig. 5. Damping coefficient and dispersion

factor r for v = 5/3. The value of Z is indi-

cated on each curve. The negative ordinate

axis shows R = r — 1, R* denotes thevalue
of R for r = 'y'l/z.

To a first approximation this agrees qualitatively with the approxi-
mate theory, with different meaning for ¢ and Z. The damping coef-
ficients are proportional to Z; ag = agy ~ 071, oy and o are inde-
pendent of g; ag; ~ M7, 0y ~ M1, oo is independent of Ar. When
y —1 =08 <€ 1, the waves are nearly adiabatic for arbitrary Z and v,

tme = a6 (1 + b:0) + 0 (8%,
Eomi =1+ a0 (1 +5,8) + 0 (5).
g = alﬁv

oy = 3Bt + B,

b= 1y (1 + BRI (3 — ) K o+ 2 (B — 28— 1)),

by= 1y (4 P72 (2 (302 — 1) Ky — (B* + 146 + D)1,
Ky =v(1 + 031K, (2.7
To a first approximation this yields
_ . _1—1 8 _1—1 Bv
R eh CE P EY
a—%ﬁ whenv<€1, 0t1———§whenV>1 (2.8)

When B(vy,) = 1 the coefficient oy(v) has a single extremum-~
a maximum at the point v = v;;. When B(vy,) > 1 there are three
extrema: a minimum at v = vy, and a maximum, equal to §/4, at
either side of the minimum, at vy, and vp,. The variables vy, and
v ate the roots of the equation B = 1 and are functions of the param-
eter Z. As Z increases from Z = K"l(vm) to infinity vy, decreases
from vy, to zero, and vy, increases from Vi 10 0, When Z > 1,

ViniVmg = 3.
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§3. Nearly isothermal waves. When 3 > 1 the speed of the waves
dlffers from the isothermal speed of sound by a quantity of the order
of 872, The roots of the characteristic equation can be represented
by the series
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by= 1—‘5’1‘—;;& {1 — 1) (497 + 1) — 2 (77 — 3) Ky — BagKy +
+AKS?) + & (7 — K ) bs—Y Y1 [BY (Y — 1)2— Yy (5— 30 2)ag?Ko'],

Ky = K, (v), oy’ = Oy (U'),,

_ ’ T ba )
b= K& =7 g, ba g My — 3as
5 e (=177 +1) 4+ (3 — 11y —3as’ +

+4KY) K'Y 4 2

fover—1 07 —3)+ L kv Br—na—

6472 {
65120 13 (117 4 )02
—9
0 - 8 —1) H
33407 ., W —8rt it L,
G ek~ G

For small v the condition 8 > 1 becomes £ « 1, and for large v
it becomes Zv > 1, i.,e., for large Z Eqs. (3.1) hold in the range
2™ «v « Z, To a first approximation
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The coefficients oy, oy reach a minimums:
vmin = vy / VY,  Gomin = 2475 (y — 1) / Z,

amin = 2.475 (y — 1) / (V¥2). (3.3

§4. Diffusely radiating waves. Let Z > 1, B = O(1). This is equiva-
ient to the conditions

Z>1,
zZ>1,

v<€1, Zv=0(),

v>1, [=0(). (4.1)

For v « 1 we obtain
M. = mpy ? 0.3 (452 + B?)™ [myy (4143 + B, By) +
+ min (418 — 4B o - 0 (o) mi = my F 0.3 (4, +
+BA [myy (A14;+ BiBs) — myy (A1Bs — 4,B1)] 2 + 0 (v%)],
Ay =y (gt — mid) + (Mgt — 6my’mi® + mygt),
Ay =y + 2 (mpe? — migd),
By = 2mpgmigly -2 (mpe? — mid)},

By = 4mpgmy — v7,, (4.2)
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=1, if y<2 v=—1, if y>2), (4.3)

To the first approximation these results coincide with those of the
averaged theory, but in the averaged theory zy = Z°v", The parame-
ters Z and v appear only in the combination Zv. The coefficient oy
increases with zq from (y — 1) Z»? / (By), proportional to o* and )\i,
w3y —1)/(2 V' vZ) which is independent of o and A;. For equal zy,
Zoy increases with increasing y. For small z; to the first approxima-
tion oyy ~ o and aygg ~ A, while for large z; oy ~ o™l and oy ~ A;l,
and

7 £, ap=o0a =y — 1) Zv/ (6Y);
a1, wo=0,=3—1/2 VyZo). 4.4)

In the remaining range of zy, for equal z; and ¥ ag < oy, but
the general form of the curves for ogy(z;) and oy(zy) is similar. Each
of these has one extremum-— a maximum

Smae =1 Gemag=75 @ Vi—1— ViE—1)"
Ymax={1—V2—=7) 1+ V™ (4.5)

This case corresponds to the diffusion approximation for radiation,
Assuming that the radiative transfer can be represented by radiative
thermal conductivity, we can replace the equation of radiative trans-
fer in (1.1) by the relation # = — k,07 / 9z and thus obtain (4.3) in-
stead of the characteristic equation (1.3).

§5. Emitting waves, In the case Z > 1, £ =0 (1) we have
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To the first approximation we have purely emitting waves [1],
which depend only on the emission of radiation. To the first approxi-
mation the expressions agree with the results based on the direction-
averaged equation of radiative transfer, In the limiting cases

bt w=YTa-0t a=la-ng,

Vv - —4 s G
== 2 ey =T Vin =,

—1—1 =1=1z
oy 7 ¢, o il

L, aw= 72? 1 [

0, =Y=1z9. (5.3)

The variables £y, oqp, and oy have single extrema-maxima

1 (37 1\
4 o — ]
°1 max ¥ kTﬂ“d)
o1
oma T2 YIG D)
1 Vi—t (5.4)

Z,m“:*‘/—'}, % max = Vr+1

The damping coefficient increase with increasing y.

This case corresponds, to the first approximation, to the Newtonian
theory of wave motion in purely emitting media, without absorption
[2, 3]. Assuming that the heat transfer is due only to the deviation
of the radiative emission from its equilibrium value, one can replace
B ~ J in the right side of the equation of radiative transfer by B — By
to obtain (5. 2) instead of (1.3).

§6. Wave attenuation in an emitting-absorbing gas. For small Z
the portion of energy transferred by radiation is small, the process is
nearly adiabatic, the damping of the pressure waves is weak, and the
waves propagate at the Laplacian speed of sound. This case is de-
scribed in §2. In the case of large optical thicknesses the interior of
each wave reaches radiative equilibrium and in the case of large fre-
quencies the waves approach a frozen state, For moderate values of
the optical thickness of the wavelength one obtains maximum values
of the damping coefficients oy oy and minimum speed, When Z in-
creases to 4~5 the damping coefficients increase, but the general
form of the dependence on v remains the same, as can be seen in
Figs. 2~4, which are based on numerical solutions of (1.3). Further
increase in Z results in a qualitative change of the curves oyg and oy
in the range v = O(1): first, two additional inflection points appear
to the right of the maximum and then a minimum and a maximum are
formed. This change becomes more pronounced the higher is the value
of y. For small y — 1 the original maximum (Z <« 1) at v = 1 splits
with increasing Z into two extrema, the one near v = 1 becoming a
minimum. For moderate Z the behavior of the waves in the case of
small and large v is described by (2.2), and for other values of Z it is
described by (1.3), There appears a dependence of the quantity ooTZ-l
on Z: with increasing Z the curve moves toward large v and the coef-
ficient o (v) increases as 2 monotone function of Z and increases with
increasing y. The coefficients oy, oy increase with increasing Z for
arbitrary y only for small Z. For moderate and large Z this rule re-
mains valid only in the regions z; < 1 and g < 1,

For Z >» 1 and small or large v, when z3 < 1or§ « 1, the waves
are described by the equations of §2, In the range of moderate z; and
¢ the proper equations and results are those of §4 and §5, When B8 is
large, the waves are described by the results of $3. These limiting
equations cover the full range of v. Thus, for sufficiently large Z the
coefficients oy, o4 have two maxima and one minimum each.

The magnitudes of the maxima depend ouly on ¥, the position of
the first of these depends only on Z, and the position of the other one
depends on y and Z. Two "relaxation” times are significant. The
minima depend on y and Z, and their positions depend only on y.

The coefficient o, Z “! is 2 monotone function of v and increases
from 0 to (y = 1)/2y and is almost the same for all large values of Z,
The curves ogq, oy, o lie closer to the horizontal axis as y decreases.
For a given value of y the left maximum of oy or o is larger than
the right maximum. All extrema increase with increasing ¥ in such a
way that for a given value of Z the left maxima of wygor oy are at
the same v, independent of v, whereas the minima and the right max-
ima move to the left, the right maximum of oy(v) being to the left
of the right maximum of cy(v).

The general form of the variation of the true damping coefficient
and the wave speed for large Z is shown in Fig. 5. We can distinguish
four regions:

1) In the range v <« z7! the transfer of heat inside the wave is by
a radiative -conductivity mechanism, but the relative magnitude of
this heat flux is small, so that the conditions are nearly adiabatic.
The waves propagate at the adiabatic speed of sound and decay slowly.

2) In the region v = O(Z'l) the diffusive radiative heat transfer in-
creases with decreasing optical thickness of the wave, until nearly iso-
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thermal conditions are reached. Smaller optical thicknesses of the
waves correspond to stronger radiative approach to equilibrium. The
wave speed decreases from the adiabatic wave speed to the isothermal
wave speed. The coefficients oyg and oy reach maximum values in the
middle of the range and are small near the boundaries of the range.

3) In the region 7= « v « Z the process is isothermal: the tem-
perature has time to reach equilibrium during one period of the wave.
The damping coefficients are small and the wave speed is equal to
the Newtonian speed of sound, In the range v = O(1) all variables
reach minimum values.

4) When v = O(Z) the optical thickness is so small that the radia-
tion emitted by a wave is not reabsorbed, The waves emit, the wave
speed increases from the isothermal speed of sound to the adiabatic
speed of sound, and the damping coefficients again reach a maximum
in the middle of the region.

5) When v « Z the waves become so short, and the frequency so
large, thar the period of one oscillation is insufficient for the transfer
of energy in the wave and the conditions are adiabatic.

The basic cases of wave propagation can also be characterized

by the value of the variable B, If B < 1, then, as can be seen from
(1.5), the heat flux is small and the waves are weakly damped, nearly
adiabatic sound waves and can be described by the equations of §2.
If, on the other hand, B > 1, which is possible only for large Z, then
the waves are nearly isothermal and can be described by the equations
of §3. Finally, if B = O(1), the wave speed cannot be close either to
the adiabatic ot the isothermal speed of sound and lies scmewhere be-
tween these. Three cases are then possible:

1) v = O(1), Z = O(1), and one must consider the full character-
istic equation; 2) v «< 1, z3 = O(1), the dissipation of energy takes

place by a diffusive mechanism and §4 holds; 3) whenv > 1, ¢ =
=0(1) §5 holds, The radiation emitted by a wave has no time to be
reabsorbed. This case corresponds to Stokes' theory.

In terms of relaxation theory there are three relaxation times in
the regions & = O (£,4). % = O (), o2 = O (¥4,,), and for Z «< 1
only the first of these is significant. These times were defined in terms
of v, Z, y above,
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